

CURRICULUM OF BOTANY For B.Sc. 5th & 6th SEMESTER'S

Undergraduate Programme Framed according to National Education Policy -2020

Submitted to

THE REGISTRAR TUMKUR UNIVERSITY, TUMKUR

To be implemented from the Academic Year 2023-24

MINUTES OF BOS (UG) MEETING IN BOTANY

The meeting of the Board of Studies in Botany began at 10 AM in the Department of Botany, University College of Science, Tumkur with a welcome note by the Chairperson and thereafter the agenda to be taken up for discussion was placed in the meeting.

1] The Curriculum [NEP] in Botany both Theory and Practicals for V and VI Semester issued by the State Higher Education Council was discussed

2] Ttitles of Discipline specific elective and respective practical papers were accepted as it is

3] Content was finalized with necessary additions and deletions in Paper V, VI VII and VIII and respective practical papers

2] Allotment of marks for Formative assessment for award of internal assessment was also discussed and finalized

3] Blueprint of the question papers for both theory and practical's was also discussed and finalized

4] Scheme of evaluation of practical question papers was also discussed and finalized

5] Members authorized the Chairperson to submit the syllabus and proceedings of the meeting to the appropriate authority and to make necessary corrections in case of any exigencies

The meeting ended with a vote of thanks by the Chairperson

andascong eethamia 4 Dr. V.N. Musulidh 5 AR FTZ Jaber Dr. Prosnima Dr. H R. Ravees STAR BURGE 15.35 antendo aditan con

BOTANY Curriculum Plant Morphology and Taxonomy (Theory)

Program Name	B.Sc. in BOTANY	Semester	V	
Course Title	Plant Mor	Plant Morphology and Taxonomy (Theory)		
Course Code	DSC – BOT-C9 - T	No. of Credits	04	
Contact hours	60 Hours	Duration of	2 hours	
		SEA/Exam		
Formative	40	Summative	60	
Assessment Marks		Assessment Marks		

	Course Pre-requisite(s):		
	After the successful completion of the course, the student will be able to		
CO1	Understanding the main features in Angiosperm evolution		
CO2	Ability to identify, classify and describe a plant in scientific terms, thereby, Identification of plants using dichotomous keys. Skill development in identification and classification of flowering plants.		
CO3	3 Interpret the rules of ICN in botanical nomenclature		
CO4	Classify Plant Systematic and recognize the importance of herbarium and Virtual Herbarium, Evaluate the Important herbaria and botanical gardens		
CO5	Recognition of locally available angiosperm families and plants and economically important plants. Appreciation of human activities in conservation of useful plants from the past to the present		
	Contents 60 Hrs		

Unit 1:	15 hrs	
Morphology of Root, Stem and Leaf. Their modifications for various functions.		
Inflorescence - types. Structure and variations of flower. Fruits-types. Floral		
diagram and floral formula.		
Introduction to Taxonomy: History, objectives, scope and relevance of Taxonomy		
Systems of classification: Artificial, Natural and Phylogenetic: Bentham &		
Hooker's, Engler and Prantl's system and APG IV System (2016)Merits and		
demerits of classification.		
Herbaria and Botanical gardens: Important herbaria and botanical gardens of the		
world and India. Technique of Herbarium Preparation.		
Taxonomic literatures: Floras, E-flora and Monograph.		

Unit 2:	15 hrs	
Plant descriptions: Common Terminologies used for description of vegetative and		
reproductive parts of the following families. Study of the diagnostic features of		
Angiosperm families: Annonaceae, Brassicaceae, Rutaceae, Fabaceae (with sub		
Families: Papilionaceae, Caesalpinaceae and Mimisaceae), Cucurbitaceae, Apiaceae,		
Rubiaceae, Asteraceae, Apocynaceae, Lamiaceae, Euphorbiaceae, Arecaceae, and		
Poaceae. Plant Taxonomic Evidences: from Embryology, Cytology and		
Phytochemistry		
Unit 3:	15 hrs	
Taxonomic Hierarchy: Concept of taxa (family, genus, species); Categories and		
taxonomic hierarchy; Species concepts (biological, morphological, evolutionary).		
Modes of speciation. Botanical Nomenclature: Principles and rules (ICN); Latest		
code -brief account, Type concept (Typification), Rule of priority, Author citation.,		
valid publication, rejection of names, principle of priority and its limitations; Names		
of hybrids/cultivated species		
Unit 4:	15 hrs	
Biometrics, Numerical Taxonomy; Phenetics and Cladistics: Characters;		
Variations; OTUs, character weighting and coding; Cluster analysis; Phenograms,		
cladograms (definitions and differences). Phylogenetic Systematics: Terms and		
concepts (primitive and advanced, homology and analogy, parallelism and		
convergence, monophyly, Paraphyly, polyphyly, clades, synapomorphy,		
symplesiomorphy, apomorphy, lineage sorting, serial homology etc). Origin and		
evolution of angiosperms; Co-evolution of angiosperms and animals; Methods of		
illustrating evolutionary relationship (phylogenetic tree, cladogram).Molecular		
taxonomy: DNA sequences of chloroplast genes (rbcL) and one nuclear gene		
(nuclear ribosomal 18s DNA).		

Pedagogy: Teaching and learning, Seminar, Assignments, etc

Formative Assessment for Theory Compulsory as per guidelines		
Assessment Occasion/ type Marks		
Attendance	10	
Test (Objective type)	10	
Assignments	10	
Seminar 10		
Total 40 Marks		

GENERAL PATTERN OF THEORY QUESTION PAPER FOR PLANT MORPHOLOGY AND TAXONOMY

(For Semester end Examination)

Time: 02 Hours

Part-A

I. Answer any 04 questions: 4 X 2 = 08 marks 1. 2. 3. 4. 5.

Part-B

II. Answer any 04 questions:

- 6. 7. 8. 9.
- 10.

Part-C

III. Answer any 04 questions:

- 11.
- 12.
- 13.
- 14.
- 15.

Note:

- 1. Minimum 1 question from each unit
- 2. Last question under Part-C 08 may be split in to two of 4 marks each (4+4) if necessary
- 2. Proportionate weightage shall be given to each unit based on number of hours prescribed

4 X 08 = 32 marks

4 X 5 = 20 marks

Max Marks: 60

Plant Morphology and Taxonomy (Practical)				
Program Name 1		B.Sc. in BOTANY	Semester	V
Course Title		Plant Morphology and	Practical Credits	02
	Taxonomy (Practical)			
Cou	rse Code	DSC – BOT - C10 - P	Contact Hours	4 Hours per week
Form	native	25 Marks	Summative Assessment	25 Marks
Asse	essment			
	Γ	Practical Co		
	Study of root, st	em and leaf structure and m	nodifications. Study of inflor	rescence types.
1	Study of flower a	and its parts, Study of fruits.	Floral diagram and floral for	rmula
	Study of famili	es mentioned in theory w	vith suitable diagrams, des	cribe them in
	technical terms	(Description, V.S. flower,	section of ovary, floral dia	agram/s, floral
2		-	-	_
	formula/e and systematic position according to Engler & Prantl's system of classification) 26 hr			26 hrs
	,			
Construction of plant phylogenetic trees using various loci (<i>atp</i> B, rb		-		
C	with various phylogenetic methods (Neibour Joining, Maximum Likelihood etc) 06 hrs			od etc) 06 hrs
	Identify plants/plant products of economic importance belonging to the families			
mentioned in the syllabus; with binomial, family and morphology of useful pargram, Horse gram, Black gram, Bengal gram, Tamarind, Bitter gourd, C		ful parts. Green		
		d, Coriander,		
	Coffee, Ricinus, Coir, Arecanut, Ragi, Catharanthus roses, Rauvolfia serpentaina,		rpentaina,	
				16 hrs
F	- Field visit: Local or outside area/ Botanical garden/ tribal settlements			
5				of 10 mm
	Submission: Record book, Tour report and Herbarium (Preparation of 10 properly			
6	6 identified herbarium specimens; mounting of a properly dried and pressed spec		ed specimen of	
	any common plants from your locality with herbarium label)			

Formative Assessment for Practical			
Compulsory	Compulsory as per guidelines		
Assessment Occasion / Type Marks			
Attendance	05		
Test	05		
Field Visit	05		
Submission(Tour report and Herbarium) 10			
Total25 Marks			

Pedagogy: Teaching and learning, conducting experiments, field visits

QUESTION PAPER & SCHEME OF PRACTICAL EXAMINATION FOR PLANT MORPHOLOGY AND TAXONOMY

(For the Semester end examination)

Time:03Hours	Max Marks: 25
1. Identify, classify and describe the specimen A, B & C taxonomically	3 X 3 = 9 Marks
2. Write the floral diagram and floral formal of the given specimen D	3 Marks
3. Identification of Specimen / Photocopy E, F and G	3 X 2 = 6 Marks
4. Viva Voce	2 Marks
5. Submission (Journal / Record +Study Tour Report)	5 Marks

General instructions:

- Q1. Give 2 specimens from Dicotyledons (A) and 1 specimen from Monocotyledons (B)
- Q2. Give specimen from family they studied (D)
- Q3. Give 1 Specimen from Slides / materials from Root / Stem / Leaf / Inflorescence for (E), one Flower / Fruit for (F) and 1 specimen from Economic importance (G)
- Q4. Viva Based on Practical syllabus (Portion / specimen not given in practical examination)
- Q5. Submission- Certified Class Record

Note: Same Scheme may be used for IA (Formative Assessment) examination

References:

- 1. Baker. H.G.1970. Plant and Civilization, Wadsworth Publishing Company
- 2. Colton C.M.1997. Ethnobotany Principles & applications. John Wiley & sons Chichester
- 3. Cotton, C.M. 1996. Ethnobotany Principles and Applications. Wiley and Sons
- 4. Datta S C, Systematic Botany, 4th Ed, Wiley Estern Ltd., New Delhi, 1988.
- 5. Eames A. J. Morphology of Angiosperms Mc Graw Hill, New York.
- 6. Hall, B.G. (2011). *Phylogenetic Trees Made Easy: A How-To Manual*. Sinauer Associates, Inc. USA
- 7. Heywood Plant taxonomy Edward Arnold London.

8. Jeffrey C .J. and A. Churchil - An introduction to taxonomy – London.

9. Jeffrey, C.(1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge

10. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F., Donogue, M.J., 2002. *Plant Systematics: A Phylogenetic approach*, 2nd edition Sinauer Associates, Inc., USA

11. Lawrence - Taxonomy of Vascular Plants - Oxford & I B H, New Delhi.

12. Manilal, K.S. and A.K. Pandey, 1996. *Taxonomy and Plant Conservation*. C.B.S. Publishers & Distributors, New Delhi

13. Manilal, K.S. 2003. *Van Rheede's Hortus Malabaricus.English Edition*, with Annotations and Modern Botanical Nomenclature. (12Vols.) University of Kerala, Trivandrum

14. Naik V.N., Taxonomy of Angiosperms, 1991. Tata Mcgraw-Hill Pub. Co.Ltd., New Delhi.

15. Pandey, S.N & S.P. Misra (2008)-Taxonomy of Angiosperms - Ane Books India, New Delhi.

16. Radford A B, W C Dickison, J M Massey & C R Bell, *Vascular Plant Systematics*, 1974, Harper & Row Publishers, New York.

17. Singh G.2012. Plant systematics: Theory & Practice. Oxford & IBH, Pvt. Ltd., New Delhi

18. Singh V. & Jain - Taxonomy of Angiosperms - Rastogi Publications, Meerut.

19. Sivarajan V. V - Introduction to Principles of taxonomy - Oxford & I B H New Delhi.

20. Any local/state/regional flora published by BSI or any other agency

GENETICS AND PLANT BREEDING (THEORY)

Program Name	B.Sc. in BOTANY	Semester	V
Course Title	Genetics and Plant Breeding (Theory)		
Course Code	DSC – BOT-C11 - T	No. of Credits	04
Contact hours	60 Hours	Duration of	2 hours
		SEA/Exam	
Formative	40	Summative	60
Assessment Marks		Assessment Marks	

	Course Pre-requisite(s):		
	After the successful completion of the course, the student will be able to		
CO1	Understanding the basics of genetics and plant breeding		
CO2	Ability to identify, calculate and describe crossing over, allelic generating frequencies of recombination	ons and	
CO3	Interpret the results of mating and pollinations		
CO4	Classify Plant pollination methods		
CO5 Recognition of modes of inheritance of traits/ phenotypes and Phenotype-genoty correlate		genotype	
	Contents	60 hrs	
Unit	1:	15 hrs	
Chro	mosomes: Morphology - Size, number, structure, classification. Autosomes,		
Allos	omes. Karyotype and Idiogram. Nucleosome concept. Giant chromosomes:		
Lampbrush and salivary gland chromosomes. Chromosomal aberrations:			
aneuploidy-monoploidy, diploidy, polyploidy. Euploidy - monosomy, disomy,			
nullis	omy, trisomy.Structural aberrations: Deletion, duplication, inversion and		
transl	ocation. Sex linkage		
Unit 2:		15 hrs	
Gene	tics: History of Mendel, terminologies, Principles and laws of inheritance,		
Chron	nosome theory of inheritance, incomplete dominance and co-dominance.		
Letha	l alleles, Epistasis, supplementary and complimentary interactions. Pleiotropy,		
Genet	ic problems. Extra chromosomal Inheritance Chloroplast mutation:		
Variegation in Four o'clock plant; Mitochondrial mutations in yeast. Mutation:			
types,	molecular basis of mutation, mutagens - physical and chemical. Detection of		

15 hrs
15 hrs

Formative Assessment for Theory		
(Compulsory as per guidelines)		
Assessment Occasion/ type Marks		
Attendance	10	
Test (Objective type)	10	
Assignments	10	
Seminar 10		
Total	40 Marks	

Pedagogy: Teaching and learning, Seminar, Assignments etc

GENETICS AND PLANT BREEDING (Practical)					
Prog	gram Name	B.Sc. in BOTANY	Semester	V	
Course Title		Genetics and Plant Breeding (Practical)	Practical Credits	02	
Course Code		DSC – BOT – C12 - P	Contact Hours	4 Hours per week	
For	native Assessment	25 Marks	Summative Assessment	25 Marks	
		Practical Co	ntent	1	
1	Mendel's laws throu	gh seed ratios. Laborator	y exercises in probability a	nd chi-square	
2	Chromosome mapping	ng using point test cross	data.		
3	Study of Karyotype,	Salivary gland chromoso	ome and Lamp brush chron	nosome	
4	Photographs / Perma	nent Slides showing Tran	nslocation Ring and Invers	ion Bridge	
5	Problems related to t	opics prescribed under G	enetics		
6	Artificial vegetative	propagation: cutting, lay	ering, grafting and gootee		
7	Natural vegetative p	ropagation: Rhizome, bul	b, corm		
8	Study of Pollen viab	ility test			
9	Study of emasculation	on technique			

Pedagogy: Teaching and learning, conducting experiments, field / Laboratory visits

Formative Assessment for Practical Compulsory as per guidelines			
Assessment Occasion / Type	Marks		
Attendance	05		
Test	05		
Field Visit	05		
Submission- Assignment	10		
Total	25 Marks		

GENERAL PATTERN OF THEORY QUESTION PAPER FOR GENETICS AND PLANT BREEDING

(For Semester end Examination)

Time: 02 Hours Max Marks: 60 Part-A I. Answer any 04 questions: 1. 2.

- 3. 4.
- 5.

Part-B

II. Answer any 04 questions:

- 6. 7. 8. 9.
- 10.

Part-C

III. Answer any 04 questions:

- 11.
- 12.
- 13.
- 14.
- 15.

Note:

- 1. Minimum 1 question from each unit
- 2. Last question under Part-C 08 may be split in to two of 4 marks each (4+4) if necessary
- 2. Proportionate weightage shall be given to each unit based on number of hours prescribed

4 X 5 = 20 marks

4 X 08 = 32 marks

4 X 2 = 08 marks

PRACTICAL EXAMINATION QUESTION PAPER & SCHEME FOR GENETICS AND PLANT BREEDING

(For the Semester end examination)

Time: 03Hours	Max Marks: 25
1. Perform the emasculation / pollen viability / fertility of the given sample \mathbf{A}	3 Marks
2. Solve the given Genetic problem \mathbf{B} and write the suitable ratio	5 Marks
3. Identify the specimen / photocopy/ slide \mathbf{C} and \mathbf{D}	4 X 2 = 8 Marks
4. Viva Voce	4 Marks
5. Submission of certified class Record	5 Marks

General instructions:

- Q1. (A) Material Cassia / Hibiscus / Any locally available material
- Q2. (B) Any problem related to Mendelism and Mendelian deviation
- Q3. (C) and (D) Down's, Klinefelter's and Turner's syndromes, Translocation Ring and Inversion Bridge
- Q4. Viva voce: Based on Practical syllabus (Portion / specimen not given in practical examination)
- Q6. Submission- Certified Class Record

Note: Same Scheme may be used for IA (Formative Assessment) examination

References

1. Acquaah, G. (2007). Principles of Plant Genetics &Breeding. New Jearsey, U.S.: Blackwell Publishing.

2. Singh, B.D. (2005). Plant Breeding: Principles and Methods, 7th edition. New Delhi, Delhi: Kalyani Publishers.

3. Chaudhari, H.K. (1984). Elementary Principles of Plant Breeding, 2nd edition. New Delhi, Delhi: Oxford – IBH.

4. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, 8th edition. New Delhi, Delhi: John Wiley & sons

5. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis, 10th edition. New York, NY: W.H. Freeman and Co

6. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics, 10th edition. San Francisco, California: Benjamin Cummings

7. Raven, F.H., Evert, R. F., Eichhorn, S.E. (1992) Biology of Plants New York, NY: W.H. Freeman and Co.

8. Welsh, J. R. (1981). Fundamentals of Plant Genetics and Breeding. John Wiley and Sons, New York.

9. Poehlman, J.M. (1987). Breeding Field Crops, 3rd Ed. AVI Publishing Co. Inc., Westport, Connecticut

10. Chopra, V.L. (2000). Plant Breeding: Theory and Practice 2nd Ed. Oxford & IBH, New Delhi

CELL BIOLOGY (THEORY)

Program Name	B.Sc. in BOTANY	Semester	V
Course Title		Cell Biology (Theory)	
Course Code	DSC – BOT-C13 - T	No. of Credits	04
Contact hours	60 Hours	Duration of	2 hours
		SEA/Exam	
Formative	40	Summative	60
Assessment Marks		Assessment Marks	

Course Pre-requisite(s):				
	After the successful completion of the course, the student will be able to			
CO1	Understanding of Cell metabolism, chemical composition, physiochemi functional organization of organelle	cal and		
CO2	Contemporary approaches in modern cell and molecular biology			
CO3	To study the organization of cell, cell organelles and bio molecules (i.e protein, carbohydrate, lipid and nucleic acid)			
CO4	To gain knowledge on the activities in which the diverse macro molecules and microscopic structures inhabiting the cellular world of life are engaged			
CO5	To understand the various metabolic processes such as respiration, photosynthesis of which are important for life.			
	Contents	60 hrs		
Unit	l:	15 hrs		
Cell:	Cell wall, chemical composition, functions and variations in prokaryotic and			
eukar	yotic cells (primary and secondary wall), Glycocalyx, pit connections. Cell			
memb	brane: Structure and functions, active and passive transport, proton pumps			
associ	ated (Na-K, Cacal modulin etc. and their distribution), phagocytosis,			
pinoc	ytosis, exocytosis.			
Unit	2:	15 hrs		
Cell	organelles; Structural organization and functional marker enzymes of			
Mitoc	hondria, Endoplasmic Reticulum, Chloroplasts, Golgi Apparatus, Lysosomes.			
Bioge	nesis of mitochondria and chloroplasts. Brief account of transport in			
Mitochondria and Chloroplast (Tim/Tom). Targeting and insertion of proteins in				
ER. S	orting and export of protein from Golgi Apparatus			

Unit 3:	15hrs
Nucleus: Nuclear envelope, structure of nuclear pore complex, nuclear lamina,	
transport across nuclear membrane, Nucleolus. Cell cycle: Phases of eukaryotic cell	
cycle, mitosis and meiosis; Regulation of cell cycle- check points, role of protein kinases.	
Causes of cancer, role of mitosis in causing cancer, Programmed cell death	
Unit 3:	15hrs
Genetic material: Introduction, discovery, chemical nature, structure and	
replication of genetic material, genetic code, non-genetic RNA, Biosynthesis of	
proteins, Regulation of gene action in prokaryotes (Lac Operan concept), Gene	
regulation in eukaryotes	

Pedagogy: Teaching and learning, Seminar, Assignments etc

Formative Assessment for Theory (Compulsory as per guidelines)			
Assessment Occasion/ type	Marks		
Attendance	10		
Test (Objective type)	10		
Assignments	10		
Seminar	10		
Total	40 Marks		

Prog	gram Name	B.Sc. in BOTANY	Semester	V
Cou	rse Title	CELL BIOLOGY (Practical)	Practical Credits	02
Course Code		DSC – BOT – C14 - P	Contact Hours	4 Hours per week
Formative Assessment		25 Marks	Summative Assessment	25 Marks
		Practical Co		
1	Study of plant cell		intent pidermal peel mount of Or	nion/ Rhoeo
1 2	•		pidermal peel mount of Or	nion/ Rhoeo
	Study of cell and it	structure with the help of e	pidermal peel mount of Or of electron micrographs	nion/ Rhoeo
2	Study of cell and it Measurement of lea	structure with the help of e	epidermal peel mount of Or of electron micrographs ell using micrometry	nion/ Rhoeo
2 3	Study of cell and it Measurement of lea Study different stag	structure with the help of e s organelles with the help o ngth and breadth of plant c	epidermal peel mount of Or of electron micrographs ell using micrometry	nion/ Rhoeo

Pedagogy: Teaching and learning, conducting experiments, field / Laboratory visits

Formative Assessment for Practical Compulsory as per guidelines			
Assessment Occasion / Type	Marks		
Attendance	05		
Test	05		
Field Visit	05		
Submission- Assignment	10		
Total	25 Marks		

GENERAL PATTERN OF THEORY QUESTION PAPER FOR CELL BIOLOGY

(For Semester end Examination)

Time: 02 Hours

Part-A

I. Answer any 04 questions:

- 1.
- 2.
- 3.
- 4.
- 5.

Part-B

II. Answer any 04 questions:

- 6. 7. 8.
- 8. 9.
- 10.

Part-C

III. Answer any 04 questions:

- 11.
- 12.
- 13.
- 14.
- 15.

Note:

- 1. Minimum 1 question from each unit
- 2. Last question under Part-C 08 may be split in to two of 4 marks each (4+4) if necessary
- 2. Proportionate weightage shall be given to each unit based on number of hours prescribed

Max Marks: 60

4 X 2 = 08 marks

4 X 5 = 20 marks

4 X 08 = 32 marks

Part-I

PRACTICAL EXAMINATION QUESTION PAPER & SCHEME FOR CELL BIOLOGY

(For the Semester end examination)

Time: 03Hours

Max Marks: 25

Preparation of squash / smear of material A, identify, Sketch and label any two stages with reasons
 Find out cell length and breadth of the given material B using micrometry
 Identify the slides C & D
 Viva-voce
 Submission (Record + 5 Permanent slides)
 General instructions:

Q1. (A) Give specimen from Onion/ Rhoeo

Q2. (B) Give specimen from Onion/ Rhoeo leaf

Q3. (C) Permanent slide from mitosis & (D) meiosis / Photocopies of Cell organelles

- Q4. Viva-voce Based on Practical syllabus (Portion / specimen not given in practical examination)
- Q5. Submission (Record + 5 slides)

References

1. Cooper, G.M., Hausman, R.E. (2009). The Cell: A Molecular Approach, 5th edition.

Washington, D.C ASM Press & Sunderland, Sinauer Associates, MA

2. Karp, G. (2010). Cell Biology, 6th edition. New Jersey, U.S.A.: John Wiley & Sons.

De Robertis, E. D. P. and De Robertis R. E. 2009. Cell and Molecular Biology, 8th edition. LippincottWilliams and Wilkins, Philadelphia.

3. Becker W. M., Kleinsmith L.J. and Bertni G. P. 2009. The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San fransisco.

4. Reven, F.H., Evert, R.F., Eichhorn, S.E. (1992). Biology of Plants. New York, NY: W.H.Freeman and Company

 Alberts, B., Bray, D., Hopkin, K., Johnson, A. D., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2013). Essential cell biology (4th ed.). Garland Publishing.

6. Raven, F.H., Evert, R. F., Eichhorn, S.E. (1992).Biology of Plants New York, NY:W.H. Freeman and Co.

7. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology. India: S. Chand Limited.

PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY (THEORY)

Program Name	B.Sc. in BOTANY	Semester	VI
Course Title	Plant Physiol	ogy & Plant Biochemis	stry (Theory)
Course Code	ВОТ-С15 - Т	No. of Credits	04
Contact hours	60 Hours	Duration of	2 hours
		SEA/Exam	
Formative	40	Summative	60
Assessment Marks		Assessment Marks	

Course Pre-requisite(s):				
	After the successful completion of the course, the student will be able to			
CO1	Importance of water and the mechanism of transport			
CO2	2 To understand biosynthesis and breakdown of bio molecules			
CO3	Role of plant hormones in plant development and about secondary metabolites			
CO4	4 Preliminary understanding of the basic functions and metabolism in a plant body			
CO5	To understand the importance of nutrients in plant metabolism and crop yield			
	Contents	60 hrs		
Unit	1:	15 hrs		
Plant	water relations: Importance of Water as a solvent, Diffusion, osmosis,			
imbib	ition, osmotic pressure, osmotic potential, turgor pressure, wall pressure,			
water	potential and its components. Mechanism of water absorption: Active and			
passiv	we methods, Radial transport of water, Factors affecting water absorption.			
Trans	piration: Types and process, Structure of Stomatal apparatus, Mechanism of			
guard cell movement: K+ ion transport theory, Anti transpirants, Guttation.				
Mech	anism of ascent of sap: Vital theories- Root pressure and pulsatory theories.			
Physical force theories-Transpiration pull theory. Phloem Transport: Transport of				
Physical force theories-Transpiration pull theory. Phloem Transport: Transport of				
organ	ic solutes. Path of transport, vein loading and unloading. Mass flow			
Ũ	ic solutes. Path of transport, vein loading and unloading. Mass flow hesis. Mineral nutrition: A brief account on Micro nutrients: zinc, boran,			

Unit 2:	15 hrs
Bioenergetics:	
Photosynthesis: Photosynthetic Pigments (Chlorophyll a, b, xanthophylls, and	
carotene); Photosystem I and II, reaction centre, antenna molecules; Light reaction:	
Electron transport and mechanism of ATP synthesis. Dark reaction: C3, C4 and	
CAM pathways of carbon fixation, Photorespiration.	
Respiration: Glycolysis, anaerobic respiration, TCA cycle; Oxidative	
phosphorylation, Glyoxylate, Respiratory quotient: protein, carbohydrate, lipid	
Nitrogen metabolism: Biological nitrogen fixation	
Unit 3:	15 hrs
Plant Harmones and Movements: Definition and classification of plant Hormones	
influence on plant growth development of: Auxins, Gibberlins, Cytokinins, ABA	
and Ethylene. Brief account of Senescence, Synthetic growth regulators and their	
effect on plant growth and development. Practical utility in agriculture and	
horticulture. Sensory Photobiology: Photoperiodism, function & structure of	
Phytochromes, Phototropin & Cryptochromes. Plant Movements: Phototropism,	
Geotropism, Hydrotropism and Seismonasty	
Unit 4:	15 hrs
Enzymes - Properties, classification and mechanism of action. Factors affecting	
enzyme action. Carbohydrates: classification and function. Proteins: Classification,	
structure - primary, secondary, tertiary and quaternary Vitamins: Classification,	
source, functions and deficiency symptoms. Lipids: Classification and function.	
Secondary plant products: Terpenes, alkoloids and phenolics	

Pedagogy: Teaching and learning, Seminar, Assignments etc

Formative Assessment for Theory (Compulsory as per guidelines)			
Assessment Occasion/ type	Marks		
Attendance	10		
Test (Objective type)	10		
Assignments	10		
Seminar	10		
Total	40 Marks		

PLANT PHY	SIOLOGY AND (Practio		IEMISTRY
Program Name	B.Sc. in BOTANY	Semester	V

Program Name	B.Sc. in BOTANY	Semester	V
Course Title	Plant Physiology and Plant Biochemistry (Practical)	Practical Credits	02
Course Code	BOT – C16 - P	Contact Hours	4 Hours per week
Formative Assessment	25 Marks	Summative Assessment	25 Marks

Practical Content

1	Experiment to demonstrate the phenomenon of exosmosis and endosmosis
2	To determine the osmotic pressure of the cell sap by Plasmolytic method
3	To determine the Stomatal Index
4	To demonstrate root pressure / transpiration pull in plants.
5	To compare the rate of transpiration from the two surfaces of leaf by cobalt chloride paper method
6	To demonstrate that oxygen is liberated in the process of photosynthesis
7	Separation of photosynthetic pigments by paper chromatography and measure their Rf values.
8	Study of Phototrophism
9	Qualitative test for Starch, Protein, Reducing Sugars and Lipids

Pedagogy: Teaching and learning, conducting experiments, field / Laboratory visits

Formative Assessment for Practical Compulsory as per guidelines		
Assessment Occasion / Type	Marks	
Attendance	05	
Test	05	
Field Visit	05	
Submission- Assignment	10	
Total	25 Marks	

GENERAL PATTERN OF THEORY QUESTION PAPER FOR PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY

(For Semester end Examination)

 Time: 02 Hours
 Max Marks: 60

 Part-A
 4 X 2 = 08 marks

 1.
 4 X 2 = 08 marks

 3.
 4.

 5.
 Part-B

II. Answer any 04 questions:

- 6. 7. 8. 9.
- 10.

Part-C

 $4 \ge 5 = 20 \text{ marks}$

 III. Answer any 04 questions:
 4 X 08 = 32 marks

 11.
 11.

12. 13. 14. 15.

Note:

1. Minimum 1 question from each unit

2. Last question under Part-C 08 may be split in to two of 4 marks each (4+4) if necessary

2. Proportionate weightage shall be given to each unit based on number of hours prescribed

PRACTICAL EXAMINATION QUESTION PAPER & SCHEME FOR PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY

(For the Semester end examination)

Time: 03Hours	Max Marks: 25
1. Conduct the experiment \mathbf{A} and leave the preparation for inspection	05 marks
2. Comment on minor experiment B & C	3 X 2 = 6 marks
3. Conduct micro chemical test D	03 marks
4. Viva-voce	04 marks
5. Submission of Class Record + Industrial visit report	05+2=7 marks

General instructions:

Q1. (A) Osmotic potential, Paper chromatography,

Q2. (B) & (C) Exosmosis, endosmosis, transpiration pull, cobalt chloride experiment, Bubble count experiment, Phototropism

- Q3. (D) Qualitative test for Starch, Protein, Reducing Sugars and Lipids
- Q4. Viva-voce Based on Practical syllabus (Portion / specimen not given in practical examination)
- Q5. Submission (Record + Industrial visit report)

References:

- 1. Fundamentals of Biochemistry 2nd Ed, John Wiley and Sons Inc. Wilson, K. and Walker,
- J. 1994
- 2 .JainV K, 2008 Fundamentals of Plant Physiology.S Chand andCo
- 3. Kochhar P L, Krishnamoorthy H N. Plant Physiology. Atmaram and sons, Delhi
- 4. Kumar and Purohit. Plant Physiology: Fundementals and Applications.Agrobotanical Publishers.
- 5. Malik CP, 2002. Plant Physiology Kalyani publishers
- 6. Mukherjii S, Ghosh AK, 2005. Plant Physiology New Central Book Agency, Culcutta.
- 7. Noggle GR, Fritz GJ, Introductory Plant Physiology.Prentice Hall of India.
- 8. Pandey SN, Sinha BK, 2006. Plant physiology Vikas Publishing House NewDelhi.

9. Salisbury F B, Ross C W, 1992. Plant Physiology CBS publishers and Distributers NewDelhi.

- 10. Sinha A K, 2004. Modern Plant Physiology Narosa publishing House, NewDelhi.
- 11. Srivastava H S, 2004. Plant physiology and Biochemistry Rasthogi publications
- 12. Verma V, 2007. Text Book of Plant Physiology. Ane Books Pvt. Ltd.

INTERNSHIP FOR GRADUATE PROGRAMME (AS PER UGC & AMP; AICTE)

Course title Internship Discipline specific No of contact hours 90

No of credits 2

Method of evaluation Presentations / Report submission /Activity etc.,

- 1. Internship shall be Discipline Specific of 90 hours (2 credits) with duration of 4-6 weeks.
- 2. Internship may be full-time / part-time (full-time during semester holidays and parttime in the academic session)
- 3. Internship mentor/supervisor shall avail work allotment during 6th semester for a Maximum of 20 hours
- 4. The student should submit the final internship report (90 hours of Internship) to the Mentor for completion of the internship
- 5. The detailed guidelines and formats shall be formulated by the universities separately as prescribed in accordance to UGC and AICTE guidelines.
- 6. BOS resolved to adopt and to formulate the structure for Graduate Internship Programme after getting the suitable guidelines from the University